Masukkan soal...
Aljabar Linear Contoh
Langkah 1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 2
Langkah 2.1
Faktorkan sisi kiri persamaannya.
Langkah 2.1.1
Faktorkan menggunakan uji akar rasional.
Langkah 2.1.1.1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 2.1.1.2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 2.1.1.3
Substitusikan dan sederhanakan pernyataannya. Dalam hal ini, pernyataannya sama dengan sehingga adalah akar dari polinomialnya.
Langkah 2.1.1.3.1
Substitusikan ke dalam polinomialnya.
Langkah 2.1.1.3.2
Naikkan menjadi pangkat .
Langkah 2.1.1.3.3
Kalikan dengan .
Langkah 2.1.1.3.4
Naikkan menjadi pangkat .
Langkah 2.1.1.3.5
Kalikan dengan .
Langkah 2.1.1.3.6
Kurangi dengan .
Langkah 2.1.1.3.7
Naikkan menjadi pangkat .
Langkah 2.1.1.3.8
Kalikan dengan .
Langkah 2.1.1.3.9
Tambahkan dan .
Langkah 2.1.1.3.10
Kalikan dengan .
Langkah 2.1.1.3.11
Kurangi dengan .
Langkah 2.1.1.3.12
Tambahkan dan .
Langkah 2.1.1.4
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menemukan akar yang belum diketahui.
Langkah 2.1.1.5
Bagilah dengan .
Langkah 2.1.1.5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
- | - | + | - | + |
Langkah 2.1.1.5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | - | + | - | + |
Langkah 2.1.1.5.3
Kalikan suku hasil bagi baru dengan pembagi.
- | - | + | - | + | |||||||||
+ | - |
Langkah 2.1.1.5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | - | + | - | + | |||||||||
- | + |
Langkah 2.1.1.5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- |
Langkah 2.1.1.5.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + |
Langkah 2.1.1.5.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + |
Langkah 2.1.1.5.8
Kalikan suku hasil bagi baru dengan pembagi.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
- | + |
Langkah 2.1.1.5.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - |
Langkah 2.1.1.5.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ |
Langkah 2.1.1.5.11
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
Langkah 2.1.1.5.12
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
Langkah 2.1.1.5.13
Kalikan suku hasil bagi baru dengan pembagi.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
+ | - |
Langkah 2.1.1.5.14
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + |
Langkah 2.1.1.5.15
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- |
Langkah 2.1.1.5.16
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + |
Langkah 2.1.1.5.17
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + |
Langkah 2.1.1.5.18
Kalikan suku hasil bagi baru dengan pembagi.
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
- | + |
Langkah 2.1.1.5.19
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - |
Langkah 2.1.1.5.20
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
Langkah 2.1.1.5.21
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 2.1.1.6
Tulis sebagai himpunan faktor.
Langkah 2.1.2
Faktorkan menggunakan uji akar rasional.
Langkah 2.1.2.1
Faktorkan menggunakan uji akar rasional.
Langkah 2.1.2.1.1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 2.1.2.1.2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 2.1.2.1.3
Substitusikan dan sederhanakan pernyataannya. Dalam hal ini, pernyataannya sama dengan sehingga adalah akar dari polinomialnya.
Langkah 2.1.2.1.3.1
Substitusikan ke dalam polinomialnya.
Langkah 2.1.2.1.3.2
Naikkan menjadi pangkat .
Langkah 2.1.2.1.3.3
Kalikan dengan .
Langkah 2.1.2.1.3.4
Naikkan menjadi pangkat .
Langkah 2.1.2.1.3.5
Kalikan dengan .
Langkah 2.1.2.1.3.6
Kurangi dengan .
Langkah 2.1.2.1.3.7
Kalikan dengan .
Langkah 2.1.2.1.3.8
Tambahkan dan .
Langkah 2.1.2.1.3.9
Kurangi dengan .
Langkah 2.1.2.1.4
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menemukan akar yang belum diketahui.
Langkah 2.1.2.1.5
Bagilah dengan .
Langkah 2.1.2.1.5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
- | - | + | - |
Langkah 2.1.2.1.5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | - | + | - |
Langkah 2.1.2.1.5.3
Kalikan suku hasil bagi baru dengan pembagi.
- | - | + | - | ||||||||
+ | - |
Langkah 2.1.2.1.5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | - | + | - | ||||||||
- | + |
Langkah 2.1.2.1.5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | - | + | - | ||||||||
- | + | ||||||||||
+ |
Langkah 2.1.2.1.5.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + |
Langkah 2.1.2.1.5.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + |
Langkah 2.1.2.1.5.8
Kalikan suku hasil bagi baru dengan pembagi.
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Langkah 2.1.2.1.5.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
Langkah 2.1.2.1.5.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Langkah 2.1.2.1.5.11
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
+ | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Langkah 2.1.2.1.5.12
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Langkah 2.1.2.1.5.13
Kalikan suku hasil bagi baru dengan pembagi.
+ | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Langkah 2.1.2.1.5.14
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
Langkah 2.1.2.1.5.15
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Langkah 2.1.2.1.5.16
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 2.1.2.1.6
Tulis sebagai himpunan faktor.
Langkah 2.1.2.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 2.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.3
Atur agar sama dengan dan selesaikan .
Langkah 2.3.1
Atur sama dengan .
Langkah 2.3.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Langkah 2.4.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.4.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.4.2.2.1
Bagilah setiap suku di dengan .
Langkah 2.4.2.2.2
Sederhanakan sisi kirinya.
Langkah 2.4.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 2.4.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.4.2.2.2.1.2
Bagilah dengan .
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Selesaikan untuk .
Langkah 2.5.2.1
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 2.5.2.2
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 2.5.2.3
Sederhanakan.
Langkah 2.5.2.3.1
Sederhanakan pembilangnya.
Langkah 2.5.2.3.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.5.2.3.1.2
Kalikan .
Langkah 2.5.2.3.1.2.1
Kalikan dengan .
Langkah 2.5.2.3.1.2.2
Kalikan dengan .
Langkah 2.5.2.3.1.3
Kurangi dengan .
Langkah 2.5.2.3.1.4
Tulis kembali sebagai .
Langkah 2.5.2.3.1.5
Tulis kembali sebagai .
Langkah 2.5.2.3.1.6
Tulis kembali sebagai .
Langkah 2.5.2.3.2
Kalikan dengan .
Langkah 2.5.2.4
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Langkah 2.5.2.4.1
Sederhanakan pembilangnya.
Langkah 2.5.2.4.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.5.2.4.1.2
Kalikan .
Langkah 2.5.2.4.1.2.1
Kalikan dengan .
Langkah 2.5.2.4.1.2.2
Kalikan dengan .
Langkah 2.5.2.4.1.3
Kurangi dengan .
Langkah 2.5.2.4.1.4
Tulis kembali sebagai .
Langkah 2.5.2.4.1.5
Tulis kembali sebagai .
Langkah 2.5.2.4.1.6
Tulis kembali sebagai .
Langkah 2.5.2.4.2
Kalikan dengan .
Langkah 2.5.2.4.3
Ubah menjadi .
Langkah 2.5.2.4.4
Tulis kembali sebagai .
Langkah 2.5.2.4.5
Faktorkan dari .
Langkah 2.5.2.4.6
Faktorkan dari .
Langkah 2.5.2.4.7
Pindahkan tanda negatif di depan pecahan.
Langkah 2.5.2.5
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Langkah 2.5.2.5.1
Sederhanakan pembilangnya.
Langkah 2.5.2.5.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.5.2.5.1.2
Kalikan .
Langkah 2.5.2.5.1.2.1
Kalikan dengan .
Langkah 2.5.2.5.1.2.2
Kalikan dengan .
Langkah 2.5.2.5.1.3
Kurangi dengan .
Langkah 2.5.2.5.1.4
Tulis kembali sebagai .
Langkah 2.5.2.5.1.5
Tulis kembali sebagai .
Langkah 2.5.2.5.1.6
Tulis kembali sebagai .
Langkah 2.5.2.5.2
Kalikan dengan .
Langkah 2.5.2.5.3
Ubah menjadi .
Langkah 2.5.2.5.4
Tulis kembali sebagai .
Langkah 2.5.2.5.5
Faktorkan dari .
Langkah 2.5.2.5.6
Faktorkan dari .
Langkah 2.5.2.5.7
Pindahkan tanda negatif di depan pecahan.
Langkah 2.5.2.6
Jawaban akhirnya adalah kombinasi dari kedua penyelesaian tersebut.
Langkah 2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 4